翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

transfer matrix : ウィキペディア英語版
transfer matrix

In applied mathematics, the transfer matrix is a formulation in terms of a block-Toeplitz matrix of the two-scale equation, which characterizes refinable functions. Refinable functions play an important role in wavelet theory and finite element theory.
For the mask h, which is a vector with component indexes from a to b,
the transfer matrix of h, we call it T_h here, is defined as
:
(T_h)_ = h_.

More verbosely
:
T_h =
\begin
h_ & & & & & \\
h_ & h_ & h_ & & & \\
h_ & h_ & h_ & h_ & h_ & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
& h_ & h_ & h_ & h_ & h_ \\
& & & h_ & h_ & h_ \\
& & & & & h_
\end.

The effect of T_h can be expressed in terms of the downsampling operator "\downarrow":
:T_h\cdot x = (h
*x)\downarrow 2.
==Properties==

* T_h\cdot x = T_x\cdot h.
* If you drop the first and the last column and move the odd-indexed columns to the left and the even-indexed columns to the right, then you obtain a transposed Sylvester matrix.
* The determinant of a transfer matrix is essentially a resultant.
:More precisely:
:Let h_})_k = h_) and let h_})_k = h_).
:Then \det T_h = (-1)^\rfloor}\cdot h_a\cdot h_b\cdot\mathrm(h_}), where \mathrm is the resultant.
:This connection allows for fast computation using the Euclidean algorithm.
* For the trace of the transfer matrix of convolved masks holds
:\mathrm~T_ = \mathrm~T_g \cdot \mathrm~T_h
* For the determinant of the transfer matrix of convolved mask holds
:\det T_ = \det T_g \cdot \det T_h \cdot \mathrm(g_-,h)
:where g_- denotes the mask with alternating signs, i.e. (g_-)_k = (-1)^k \cdot g_k.
* If T_\cdot x = 0, then T_\cdot (g_-
*x) = 0.
: This is a concretion of the determinant property above. From the determinant property one knows that T_ is singular whenever T_ is singular. This property also tells, how vectors from the null space of T_ can be converted to null space vectors of T_.
* If x is an eigenvector of T_ with respect to the eigenvalue \lambda, i.e.
: T_\cdot x = \lambda\cdot x,
:then x
*(1,-1) is an eigenvector of T_ with respect to the same eigenvalue, i.e.
: T_\cdot (x
*(1,-1)) = \lambda\cdot (x
*(1,-1)).
* Let \lambda_a,\dots,\lambda_b be the eigenvalues of T_h, which implies \lambda_a+\dots+\lambda_b = \mathrm~T_h and more generally \lambda_a^n+\dots+\lambda_b^n = \mathrm(T_h^n). This sum is useful for estimating the spectral radius of T_h. There is an alternative possibility for computing the sum of eigenvalue powers, which is faster for small n.
:Let C_k h be the periodization of h with respect to period 2^k-1. That is C_k h is a circular filter, which means that the component indexes are residue classes with respect to the modulus 2^k-1. Then with the upsampling operator \uparrow it holds
:\mathrm(T_h^n) = \left(C_k h
* (C_k h\uparrow 2)
* (C_k h\uparrow 2^2)
* \cdots
* (C_k h\uparrow 2^)\right)_{\sqrt{3\cdot \# h}}
:where \# h is the size of the filter and if all eigenvalues are real, it is also true that
:\varrho(T_h) \le a,
:where a = \Vert C_2 h \Vert_2.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「transfer matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.